If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+10k-3=0
a = 9; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·9·(-3)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{13}}{2*9}=\frac{-10-4\sqrt{13}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{13}}{2*9}=\frac{-10+4\sqrt{13}}{18} $
| 4y-1/5y+1=5/7 | | 0.2(6x+1) 3.6=0.5x/9 | | 5/3x+17/2=2/3x-11/2 | | 5(5x+4)=6(4x+6)-34 | | 2.5=10t+10t×10t | | 5(2x-14)=5x+15 | | 3x+8+6x=7x+12+x | | 3÷5(1+p)=21÷20 | | 8400+x=45x | | 4x^2-0,8x=0 | | 5x+30x+3+25x=345 | | 7(x-6=3(2x+1) | | y+2=6(y+3) | | 4(v+1/4)=37 | | 4(v+1/4)=7/3 | | 3x-6=-4+50 | | 4m3+12m2+11m-3=0 | | -10x-8=25x-35x-56 | | 14=2−(7−3x) | | -50=10+5x | | 4x+3=-2+5 | | 5x+7=8x+23 | | 2x-3=16-x | | 6x+30(x-12)=2(x-3/2) | | x2-70x+400=0 | | q=8r=7 | | 3x-9+39=-3x | | 3x+9+39=-3x | | 2p/3+4=3p-17 | | 2x+19=3x-5 | | 6(3x+6)=-4(5x-2) | | 1-5x=0.01 |